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Abstract. A model of relaxors as superparaelectrics with a distribution of the [ocal transition
temperature has been investigated. The necessary model parameters are obtained from the
analysis of the static polarization response of lead magnesivm niobate and then employed 1
simulations of the frequency-dependent dielectric properties.

The present model is compared with a previously published model of relaxoers, based on
a single transition temperature but with a distribution of the size of the polar regions. Both of
them describe some characteristic features of relaxors, i.e. the shift of the peaks in temperature
dependence of the real and imaginary parts of the dielectric permittivity with frequency and
the broadening of the relaxation time spectrum on cooling. However, a model which takes into
account the distribution of the size of the poiar regions describes qualitatively correctly the shape
of the relaxation time spectrum.

1. Introduction

Relaxor ferroelectrics (or relaxors) attract much interest, from the viewpoint of both
practical applications and pure science. Amongst these compounds, lead magnesium niobate
Pb(Mg)1Nbs;3)03 (PMN) is considered as a model material, and. therefore, has been the
focus of much research during the fast thirty years,

The basic dielectric properties of PMN, in both ceramic and single-crystal form, have
been reported by Smolensky er af [1], and Bokov and Myl'nikova (2], respectively. The
temperature dependence of the relative dielectric permittivity, &', of PMN has a broad peak.
The temperature of the peak (T, and its magnitude (g/,,, ) depend upon the frequency o of
the applied electric field in the radiofrequency range. With increasing w, Thnax shifts toward
higher temperatures and e/, decreases. Below Tn.x the dielectric permittivity of PMN
displays strong relaxation dispersion in the radiofrequency range. At low temperatures, the
macroscopic polarization, P, as a function of the electric field, F, shows a large hysteresis,
which decreases with increasing temperature and disappears close to T, For temperatures
higher than Tp,,, polarization is a single-valued non-linear function of the field. Since that
time much information about the properties of PMN, at temperatures both above and below
Thux, has been published.

The dielectric properties of relaxors are generally explained in the literature in terms
of small polar regions, The latier are defined as separate regions of the crystal which
have nanometre scale size and possess spontancous polarization. The dielectric response is
interpreted as a result of reorientation of the local polarization vectors () under applied
electric field. However, an origin of the polar regions and how they control the dielectric
properties of relaxors as a function of temperature and frequency are stil! matters of debate.
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Several attempts have been made to model the dielectric response of relaxors using various
hypotheses concerning the origin and behaviour of the polar regions.

Smolensky and Isupov originally introduced a concept of the ‘diffuse phase transition’,
resulting from composition fluctuations on a microscopic scale {this model is mostly known
from the review given by Smolensky [3]). The phase transition into the polar state occurs in
separate regions of the crystal, with a size of 100-1000 A, independent of one another, with
the local transition temperature, T, depending upon the composition of the individual region.
The dielectric response was interpreted as a switching of the local spontaneous polarization
between states with different orientations of the vector F;. At a given temperature T,
only regions of which the local T is close to T contribute to the macroscopic dielectric
response, since the activation energy required to switch the polarization in the region
increases drastically with temperature below T;,. Kirillov and Isupov [4] attempted to model
the dielectric permittivity of PMN using this concept of the temperature dependence of
the number of relaxing regions. Even though they obtained a good fit to the dielectric
permittivity as a function of temperature, the frequency dispersion was not described well.
In their model dielectric relaxation is of Debye-type; however, Cole-Cole plots suggest a
broad distribution of relaxation time [1].

Cross [5] suggested that relaxors might be considered as superparaelectrics. He
visualized them as consisting of small non-interacting polar regions each with a local
spontaneous polarization. Cross postulated that since ferroelectricity is a cooperative
process, the energy involved with every polar region must scale with volume and that for
regions with a size of ~100 A the potential barrier required to reorient the local polarization
vector would be comparable to the thermal energy of the crystal. Thus, the local polarization
in each region can fluctuate under the thermal agitation. According to this model all the
polar regions contribute to the orientation polarization, and, on cooling, the temperature and
frequency dependence of dielectric permittivity is due to slowing down of the fluctuations
of the local polarization vectors,

Viehland et al [6] tried to fit electric field dependences of the polarization in a
wide temperature range from below Tn. to high temperatures. In their model- rclaxors
were formally compared with magnetic spin glasses and were envisaged as consisting of
interacting polar regions, with polarization fluctuations occurring above the static freezing
temperature,

Recently Bell (7] proposed a method for calcufation of the dielectric properties of
a superparaeleciric. The approach was to treat individual polar regions as classical
ferroelectrics and employ the Landau—Ginsburg—Devonshire (LGD) theory of ferroelectrics to
describe the temperature dependence of their parameters. Unlike the Smolensky and Isupov
model [3], he used a single transition temperature and implied that the whole volume of
the crystal is occupied by the polar regions. The calculations were performed for the
fictional superparaelectric Pb(Zrg7Tip3}03. Bell [7] compared several possible scenarios
of dielectric behaviour and in some cases attained a good resemblance to the observed
behaviour, Particularly good results were obtained when a distribution of the sizes of the
polar regions was introduced into the calculations. In subsequent work [8] an attempt was
made to use the same approach and simulate the dielectric response of PMN taking the
numerical values of the model parameters estimated from the experimental evidence for
this material. Despite some discrepancies, the model appeared to give satisfactory results
for the dielectric permittivity in the temperature range around Tiyay.

It is a characteristic of relaxors that their dielectric properties are controiled by a
broad spectrum of relaxation times [9-11]. In [7] the spectrum was brought about by
the distribution of the sizes of the polar regions. However, there is another possible origin
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of the spectrum of relaxation times, namely, the distribution of local transition temperatures.
This second possibility has not yet been fully tested.

The purpose of this paper is to explore a model which considers relaxors as
superparaelectrics with a distribution of local transition temperatures and to clarify how
well the latter may account for the dielectric properties of these materials. The model will
be introduced in the second section of the paper, using PMN as a model material. As a
first test we shall fit the static polarization of PMN as a function of the applied electric field
and temperature to the model. An approach to data analysis, the experimental part and the
results of the fitting will be presented in the third, fourth and fifth sections of the paper,
respectively. Then the model will be tested again through the simulations of the dielectric
response, both static and dynamic, of relaxors in a wide temperature range, and comparison
of the results of the simulations with the experimental data. The calculations will be carried
out using the results of the analysis of the experimental data reported in the fifth section.

2. The model

The modei presented in this paper is based on three well known ideas.

(2} Chemical heterogeneity, which is a common characteristic of all relaxors, plays the
key role in the formation of microscopic polar regions [3]. As similar cations (MgZ* and
Nb** in the case of PMN) are randomly distributed in the crystal lattice, it may happen that
on the microscopic scale there exist regions within which the concentrations of Mg?t and
Nb™* are constant, but differ from one region to another. It is reasonable to expect that this
scale is of the order of 10 to 1000 A—larger than the size of the unit cell, but much smaller
than the size of the crystal or a single ceramic grain. A distribution of the composition of
such regions results in T, temperature of the transition into a polar state, varying from one
region to another,

(b) These microscopic regions are independent from each other [3, 5).

(c) The small size of the regions makes it possible to reorient the direction of the local
polarization vector rather easily, unlike the normal ferroelectrics [5]. That is, below the
local transition temperature each region behaves as a single dipole moment.

The model considers relaxors as an ensemble of non-interacting polar regions. The
polar regions have a finite size {, which is equal for all the regions. Each region behaves as
an independent, normal ferroelectric with a local transition temperature 7 ;, below which it
possesses local, temperature-dependent, spontaneous polarization F; ;. For convenience we
introduce here a dipole moment p; of the individual region, which is given by p; = B, ;>
There is a distribution of the local transition temperatures, and the number of polar regions,
thus, changes with temperature. At a given temperature T, the total number of the polar
regions is nr. and they occupy only a certain part of the crystal. On cooling, new polar
regions appear, and their number and volume fraction in the crystal increase. The rest
of the crystal volume is considered as a dielectric with isotropic properties (it is usually
said that the polar regions are embedded in an isotropic dielectric matrix). Structural data
[12] suggest that the polar phase has rhombohedral symmetry. As the polar regions do not
interact with one another the local polarization vectors in different regions are randomly
oriented in the eight {111} pseudocubic directions allowed by the rhombohedral symmetry.
Thus, in the absence of the external electric field the crystal is macroscopically isotropic
and the macroscopic polarization is equal to zero.
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2.1. Dielectric response of relaxors

There are two contributions to the macroscopic dielectric response of relaxors: orientation
and high-frequency polarization. The latter represents the pure response of the crystal lattice
to the applied electric field and is characterized by the high-frequency dielectric permittivity
£cg. Orfentation polarization results from the alignment of vectors of the dipole moments
of individual regions parallef to the direction of the applied electric fieid.

In the static case each polar region contributes to the orientation polarization a
component {p,} in the direction of the applied field. For the polar regions with thombohedral
symmetry the value of {p;) can be written [7] as

pi-E
= tanh | =—— |,
{pi) =p; tan (3kT ) {n
The total polarization due to orientation of the dipole moments is equal to the sum of the
contributions from individual regions. Thus, the static macroscopic polarization can be
presented in the form

1 &
P(T, B) = o= }_(pi) + foceoB (2)
or o=t
where V, is the volume of the crystal, £g is the dielectric permittivity of the vacuum and
{p;) is given by (1).
The low-field static relative dieleciric permittivity can be obtained from (2} as a
derivative of P(7, E) with respect to the field at the limit E — 0:

1 N,
R Ao ;:p,- + oo 3)

In the fast-changing electric field, when dielectric properties of relaxors are frequency
dependent, each polar region behaves as an independent Debye-type relaxator with its
relaxation time T. The reorientation of the local spontaneous polarization vector of a single
region beiween equivalent states is considered to be a thermally activated process with an
energy barrier between the stable states depending upon the anisotropy energy density, AG,,
and the volume of the polar region, and equal to AG,I>. A relaxation time is, therefore,
given by

3
T = Tgexp (Af;l ) . 4

From the LGD theory of ferroelectrics, the value of AG, depends upon the magnitude
of the local spontaneous polarization, F;;, and the local transition temperature, T ;. At
temperature T within the temperature range where the polar regions exist, a distribution of
relaxation times in the relaxor stems from the distribution of transition temperatures: there
coexist regions with long relaxation times {and high transition temperatures) and short ones
(regions have appeared a few degrees above T'). The dielectric properties are represented
as a superposition of individual relaxators, each of them giving the contribution depending
upon its relaxation time. The complex relative dielectric permittivity £*(w, T) can be found
as

nT p?,

*
H T = .
& 1) 3Vek Ty ~ 1+ iwt

+ oo (5

with a relaxation time T given by (4).
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Here we should emphasize the difference between the present model and that of
Smolensky and Isupov [3, 4]. In their model the sum of the contributions from the individual
polar regions was also employed. However, the summation was performed only over thc
regions of which local T; was equal 1o the temperature T. On the other hand, in the present
model ali the polar regions with T. > T contribute to the dielectric response. Therefore,
in the Smolensky and Isupov model the number of the polar regions, ny, would represent
the distribution function of the local transition temperatures, but here it corresponds to the
cumulative distribution function. This difference will become clearer later, in the analysis
of the experimental data.

The behaviour of the dielectric response of a relaxor, given by equations (2), (3) and
(5), is controlied by the distribution of the local transition temperatures: the magnitudes of
p; and 7 are functions of T, ;, and ny depends upon the distribution of T, ,. The dielectric
permittivity £, has been introduced as an average value for the crystal, however, it also
depends on the distribution of T;,. In order to judge how accurate the hypothesis about the
distribution of the local transition temperatures is we are going to compare the temperature
and frequency dependence of the dielectric response predicted by the maodel, i.e. equations
{2), (3) and (5), in a wide temperature range with that measured during the experiment.
The required model parameters will be obtained from the analysis of the static dielectric
response of PMN. An approach to data analysis will be given in the next section.

3. An approach to data apalysis

Equations (1) and (2} describe the static dielectric response and assume that the polarization
is a single-valued function of the applied field. They cannot be used in the case when
the polarization is frequency dependent or hysteretic. Actually, in relaxors the onset of
dielectric hysteresis in P(T, E) and frequency dependence of dielectric properties start to
be observed at the same temperatures, around Tpa. Thus, to test the model we should
analyse the electric field dependences of induced polarization at temperatures above Ty,
However, equations (1} and (2) may not be applied in their present form to the analysis
of experimental data, for we do not know anything about the distribution of the transition
temperatures. Instead, at temperature T we suggest replacing the system consisting of ny
polar regions with different values of the dipole moments p; by an ensemble of ny identical
polar regions with the same magnitude of the dipole moment p. The value of p is such
that the macroscopic polarization is the same for both systems at a given temperature T;

P(T, E) = Nptanh (p_ﬁ) + £gEac . (6)
3kT

Hereafter we shall call p the dipole moment of the polar regions in the sense that it is the

same for all the regions. In (6) we introduce the concentration of the polar regions N as

N =nr/V,.

The suggested replacement of an ensemble of the polar regions brings about a certain
error in P(T, E), though we believe that the error is not large, since we are considering
the static response, The dipole moment of each polar region is a slowly changing function
of temperature, and, therefore, the distribution of the values of p; at a given temperature
T, originating from the distribution of T, is insignificant. In the case of the dynamic
response one must take into account the relaxation times T of individual regions (4),
which change exponentially with temperature. Thus, the distribution of the local transition
temperatures will produce a broad distribution of T, which one cannot replace with an
average single relaxation time. Still, we understand that even for the static response the



4150 A E Glazounov et al

suggested replacement needs quantitative justification. To do so we should have information
about the function describing the distribution of the local transition temperatures. For the
moment this function is unknown, but we expect to obtain it from the analysis of the
data. For the present we take (6) for granted and shall discuss the self-consistency of the
approach later, in section 6. The number of polar regions, nr, represents in the mode] the
cumulative distribution function of the local transition temperatures. After the replacement
of an ensemble of the polar regions the value of ny (or the concentration N) does not
change. An analysis of the experimental data will yield the temperature dependence of
N, from which we can find the distribution function of the local transition temperatures,
Equation (6) is already more suitable for the analysis of experimental data. It containg
three independent parameters—N, p and &,,. They are all temperature dependent. The
correct way, therefore, would be to fit equation (6} to the experimental data for electric field
dependences of the induced polarization at a given temperature and find the values of ¥,
p and g4, However, with three parameters unambiguous fitting is not possible; the results
are strongly dependent upon the method of fitting.

To reduce the number of fitting parameters we introduce experimental data concerning
the temperature dependence of the low-field static dielectric permittivity, &f, of PMN. From
equation {6} ; can be obtained as

, _ Np?

&, =
s 3kT€o
It is similar to the expression for static dielectric permittivity which is usuaally applied to
describe the orientation polarization of polar dielectrics {13]. Let us assume that in the
low-field limit this formula is also valid in the case of the orjentation polarization of an

ensemble of the polar regions. By using this assumption, we can combine equations {6)
and (7) in the form

o - E
g60FF — P = Np (%ﬁ — tanh (%E—T-:)) (8)

where only two parameters, p and N, are involved.

To summarize, in order to analyse the polarization response of PMN in terms of the
proposed model we shall use equation (8). For that we need to know the induced
polarization P as a function of the applied field and the value of the low-field static dielectric
permittivity &f.

tel. @

4. Experimenial details

Single-phase pMN powder was produced according to the method of Butcher and Daglish
[14]. Pressed pellets were sintered at 1225 °C for 2 hours using a PMN atmosphere powder.
The density of the sintered samples was about 98% of the theoretical. Gold electrodes were
sputter deposited on the polished surfaces of the pellets.

The induced polarization of PMN ceramics as a function of the applied electric field was
measured using a virtual Sawyer—Tower circuit at different temperatures within the range
from 133 K to 393 K at 10 K intervals. The highest frequency in these measurements
was equal to 25 Hz and the lowest one to 0.1 Hz. Measurements were performed for two
amplitudes of the applied field Ern, An amplitude of 35 kV cm™' was applied in order
to obtain saturated polarization curves at fields as high as possible for the given ceramic
sample before dielectric breakdown would occur. At the same temperatures, polarization
was measured at £, = 1 kV cm™! in order to calculate the relative diclectric permittivity in
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the tow-field limit. The amplitude of the applied field of 1 kV cm™ was the lowest value
imposed by the equipment and dimensions of the sample. The waveform of the applied
field was triangular.

The real and imaginary parts of the dielectric permittivity were measured using a
HP 4284 A LCR meter, over five decades of frequency (20 Hz-1 MHz), and over the
temperature range 170—450 K. These ‘“standard’ dielectric measurements are for the purpose
of comparison of the temperature and frequency behaviour of the low-field permiitivity
calculated from the model with that observed in the experiment.

Temperature control in both experiments was maintained with a Delta Design 9023
temperature chamber,

The electric field dependences of the induced polarization measured at 35 kV cm™! are
shown in figures 1(a) and 1(b) for several temperatures, and are similar to those reported in
the literature [1, 2]. At low temperatures rather rectangular diglectric hysteresis loops are
observed. With an increase in temperature loops become tilted, having values of remanent
polarizaton and coercive field which decrease with increasing temperature. At higher
temperatures dielectric hysteresis disappears, and polarization is a single-valued function
of the applied field. The polarization plotted against the ficld has the shape of a non-linear
curve with a saturation reached in high field. With increasing temperature the magnitude
of the electric field needed to reach the saturation becomes higher (figure 1(b)). At high
temperatures, at 373 X in figure 1(b), the saturation is not observed at 35 kV e~ however,
the non-linearity of the polarization is still noticeable.

The electric field dependences of the induced polarization measured at Ey = 1 kV cm™
at low temperatures have the shape of an ellipse and at higher temperatures become a
straight line. The values of ¢’ and ¢” calculated from the low-field polarization data (at high
temperatures £” = 0 within experimental error and ¢’ is equal to the slope of a straight line)
are in good agreement with those which have been measured with conventional techniques.

In pPMN the temperature at which dielectric hysteresis appears on cooling depends upon
the measurement frequency. For the lowest frequency used in these experiments the ‘onset’
temperature is between 243 and 253 K.

5. Analysis of the experimental data within the model

For the [owest frequency used in the polarization measurements, 0.1 Hz, dielectric hysteresis
is observed at temperatures below 250 K. Therefore, at temperatures above 250 K we can
take values of the induced polarization and relative permittivity measured at 0.1 Hz as static
ones and use them in equation (8) as P(T, E) and & respectively. At every temperature
above 250 K the experimenta] data for the permittivity and P(T, E) have been modified
in the form &;60F — P and fitted to equation (8) using N and p as parameters. The
experimental electric field dependences of the polarization at each temperature were first
smoothed using a locally weighted least-squares error method. This was done in order to
reduce the scatter of the data, because even a very small experimental error, AP, which
is insignificant in comparison to the total vailue of measured polarization, becomes very
important for the function g,£oF — P, especially at high temperatures. Such a scatter in
the data may produce a large uncertainty in results of the fitting with (8). The results have
shown that the fit of the experimenial data to equation (8) with only two parameters is
unique,

When the parameters N and p are known, one can calculate saturation polarization, Py,
when all the dipole moments are parallel to the external field, the size L of the volume of the
crystal containing a single polar region, &, which is a contribution from the orientation of
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Figure 1. [nduced polarization of pMN ceramics as a function of the applied electric field
at several temperatures (the frequency is 0.1 Hz, for which the temperature of the diclectric
permittivity maximum is about 250 K).

the dipole moments to the diclectric permittivity of the crystal and high-frequency dielectric
permittivity £, by using the following formulae:

P = Np (%a}

L=nN=3 (9h)
Np?

b = 3kTep Oc)

foo = & — &p (Od}

where £ is the static permittivity measured in the experiment.

The dipole moment of the polar regions (figure 2} and the concentration of the polar
regions in the crystal (figure 3) increase with decreasing temperature. Their temperature
dependences within the temperature range addressed may be described rather well by a
linear function. The saturation polarization as a function of temperature is shown in figure
4 in comparison with the polarization measured at 35 kV cm™’. The magnitude of Piy tends
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Figure 3. Concentration of the polar regions as a function of temperature for PMN ceramics (the
line is the fit with 2 linear function).

10 zero at temperatures above 410 K. On cooling, the saturation polarization increases and,
at temperatures around 250 K, it becomes very close to the magnitude of the polarization
measured at 35 KV cm~'. Dielectric permittivity &, due to the orientation of the dipole
moments is not shown here; it drastically increases in the range from 370 K to 250 K
as a result of increase in p and N with decreasing temperature T. At high temperatures,
approximately above 410 K, g, — 0. The high-frequency dielectric permittivity, £.c. Was
calculated with (9<) and its temperature dependence is shown in figure 5. On cooling,
£0o g0es through the maximum value at temperatures around 350 K. Above 410 K, where
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Figure 5. High-frequency relative dielectric permittivity £ of PMN (the line is drawn to guide
the eyes).

s]’, #2 0, the measured dielectric permittivity coincides with £4,.

In order to estimate the quality of the fitting of the experimental data to equation (8)
we used the obtained values of p, N and &, to calculate a total polarization response with
equation (6) and compare it with the experimental data on P(T, E). At every temperature
from the range above 250 K there was a very good agreement between the experimental
values of the polarization and those calculated from the obtained parameters of the model.
For example, figure 6 shows both measured and calculated polarization curves at 293 K.
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Figure 6. Polarization as a function of the applied electric field of PMN ceramics at 293 K
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Figure 7. Temperature dependence of the size of the crystal volume containing single polar
region for PMN (the line is to guide the eyes).

The size of the volume of the crystal containing a single polar region, L, is shown in
figure 7. It decreases on cooling, and at low temperatures it tends to a value of ~30A. The
temperature dependence of L corresponds to that of the concentration of the polar regions
in the crystal. As the total number of regions increases (figure 3), the volume of the crystal
containing a single polar region must be smaller. If we assume that the size of an individual
polar region, {, does not change with temperature, we can estimate it as a low-temperature
limit of L. From figure 7 one can see that L does not change significantly below 260 K. By
extrapolating the temperature dependence of L down to low temperatures we can estimate
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the size of the polar regions as being equal to 30 A. The value of [ obtained in this way is in
good agreement with the estimate of the size of the polar regions suggested by a structural
study of PMN and equal to 100 A [12].

Now, when the value of the size of the regions is known, we can find an average local
spontaneous polarization corresponding to the dipole moment p by B,y = p/I°. The
temperature dependence of P, 4, is shown in figure 4.

The concentration of the polar regions N as a function of temperature represents the
distribution of local transition temperatures. Just above we discussed the fact that the size
of the volume of the crystal containing a single polar region at low temperatures, below
250 K, tends to the limit value equal to the size of the polar region. This actually means
that at low temperatures the concentration of the polar regions reaches its saturation value
and the whole volume of the crystal is occupied by the polar regions. Therefore, within the
temperature range 250 K to 390 K we can normalize the concentration N to its saturation
value, which is equal to I™* & (30A)~7, and introduce a cumulative distribution function
of the transition temperatures ¥ as

Y = N30 AY. ' (10)

Following Smolensky and Isupov [3] we assume that the distribution of local transition
temperatures is given by a Gaussian function around a mean value of the Curie temperature,
Te. m. With a width of distribution oy

1 (Tc —n.m)z
W) = NG exv(—T)- (1}

In this case a cumulative distribution function is described by the error function:

erf(T) = f ® W aT,.
T

A good fit of ¥ to erf(T) was obtained for the following parameters: the mean transition
temperature T, m = 320 K and or = 60 K. Figure 8 shows the result of the fitting,.

Before finishing this section we can make preliminary conclusions about the change in
the magnitude of the two contributicns to the polarization response, the high- frequency and
orientation polarizations. At high temperatures (about 370 K) the polarization is due to the
response of crystal lattice rather than orientation of the dipole moments of the polar regions.
On cooling the contribution from the orientation polarization increases, and around 250 K
it becomes dominant over the response of the crystal lattice. The reason for this is that
the magnitude of the dipole moment p and the concentration N of the polar regions both
increase with decreasing temperature. The latter, however, plays the more important role in
this process. This can be concluded from the comparison of the temperature dependences
of Py, and P, ,, plotted in figure 4. Within the studied temperature range, 250 K to 390 K,
FB; ., does not change significantly, whereas F,, drasticaily drops to very small values at
temperatures around 390 K. At the same time at high temperatures P 5, has a rather high
value of about 0.20 C m~2. Therefore, it is the concentration of the polar regions which
enters the formula for the saturation polarization (9a) and accounts for its drastic decrease
at high temperatures.

6. The dielectric response of relaxors calculated from the model

In the previous section we analysed the static dielectric response of PMN in order to obtain the
mode] parameters as a function of temperature. Here we shall present a way of calculating
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Figure 8. Comulative distribution function ¥ of local transition temperatures and its fit using
the error fynction erf. Mear transition temperature T;. ,,, = 320 K and or = 60 K.

the dielectric response of relaxors, both static and dynamic, in terms of the model introduced
in section 2. 'We shall consider only the polarization due to orientation of the dipole moments
of the polar regions. We do not take into account the high-frequency response, e/, although
it also can be modelled. We shall also present the verification of the validity of the approach
which we described in section 3 and used in the analysis of the experimental data.

Still working within the model described in section 2 we use three basic assumptions

(a) We consider a relaxor as an ensemble of non-interacting polar regions. Each region is
an independent, normal ferroelectric with the low-temperature phase with a rhombohedral
symmetry. The magnitude of a local spontaneous polarization F; of individual regions
depends upon the loca} transition temperature 7, and the temperature T of the crystal and
may be found in terms of the LGD theory of ferrcelectrics.

{b) The distribution of local transition temperatures of individual regions is described by
a Gaussian function (11) with the values of the parameters taken from the results presented
in the previous section. They are equal to T;, 1, = 320 K and or = 60 K.

{c) All the regions have the same size ! equal to 30 A.

6.1. Dielectric response

In previous sections it was convenient to use in all the expressions the dipole moment of
the polar regions. Now, since we are trying to simulate the polarization response by using
the LGD formalism for ferroelectrics, and the size of the polar region is known, it is more
convenient to work in terms of the local spontaneous polarization, #. The contribution
from individual regions to the orientation polarization is determined by the magnitude of
the local spontancous polarization P, which, in turn, is directly related to the value of the
local transition temperature. At a given temperature 7, only the regions with T, greater
than T contribute to the orientation polarization,

To perform the calculations we suggest modifying equations (2), (3) and (5), to write
them in terms of the distribution function (7). It is straightforward to show that the static
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polarization, static permittivity and complex dielectric permittivity due to the orientation of
the dipole moments of the polar regions may be written, respectively, as {we omit only the
high-frequency response given by &)

o P.PE
P(T, E) = [ y(To B tanh T2 BB g (12)
T T
T
= f T P? dT, (13)
J

P ® y (T} P?
3kTeq Jr 1+iwt
where P is a function of T, and T, and the relaxation time 7 is given by (4).

e w,T)= dT; (14)

6.2. Relaxation time spectrum

At temperatures approximately below that of the relative dielectric permittivity maxirum
relaxors display relaxation behaviour of the dielectric permittivity within the radiofrequency
range. It was shown by a number of authors, Dorogovisev and Yushin [9], Viehland ez af
{10] and Colla et af [11], that the relaxation is distinctly non-Debye. The dielectric response
of relaxors is governed by an ensemble of relaxators with a broad spectrum of relaxation
times. On cooling the width of the spectrum increases.

In terms of the model discussed here. a distribution of relaxation times in the relaxor
stems from the distribution of Curie temperatures. We introduce the function g(z, T),
where z = In 7 /1, describing the distribution of relaxation times at temperature T. The
total number of relaxators in the system is represented by the value of ¥(7T'):

oo
Y (T) = f (T2 dT.. (15)
T

Amongst them the number of relaxators with relaxation times given by z, within the interval
z lo z+ dz, is equal to ¥(T)g(z, T)dz. Since the difference in the values of z is accounted
for by the difference in the transition temperatures T, the same number of relaxators will
be equal to y(T;) dT.. Therefore, we can find the value of g(z, T) from

y (T (z))dT;
2, T)= T =8 1
gD =g (16)
The relationship between T, and 7 may be obtained from the formula
LG, (TP
= 2™ - 17
T (17)

which is a direct consequence of equation (4) for relaxation time 7.

6.3. Quantitative estimation of the validity of the approach introduced in section 3

In section 3 in order to make possible the analysis of the experimental data we replaced an
ensemble of different regions by a system of identical cnes and afterwards used equation
(6) instead of (2). At that time we could not give any quantitative justification for doing
so. The main reason was that we did not have any information about the distribution of
the values of the dipole moments at temperature . Now we know that function y(T.)
describing the distribution of the local transition temperatures is given by (11). Therefore it
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would be useful to derive an equation similar to (6} by using the expression for y(T;) and
try to estimate quantitatively the error which is introduced by such a replacement. All the
mathematical details of this can be found in the appendix. Here we mention only that in
terms of the local transition temperatures, replacement of an ensemble of different regions
by a system of identical ones means that we replace the distribution of 7, (for T, > T) by
a single temperature 7* corresponding to the value of the local spontaneous polarization of
identical polar regions. Mathematically, the function y(T.), at 7. > T, is replaced by the
delta function 8(T. — T*). This is illustrated in figure 9. It is straightforward to obtain from
(12) the following expression for the orientation polarization:

(18}

PAT, TH -I-"E)
3kT :

P(T, E)=Y(T)YB{T,T") Lanh(

- S(TC-T*)

T T T | ISLINELE S S B B ot

*
T T T,
Figure 9. Distribution function y(T;) of the local transition temperatures, part of ¥(7:) showing

that only regions with T, > T contribute to the orientation polarization {drawn by bold solid
line) and delta function §(T. — T},

It is clear that equation (18) is equivalent to (6) to within & . The suggested replacement
of an ensemble of the polar regions introduces an error in P(T, E), the value of which
depends upon the magnitude of the electric field, E. However, the replacement can be done
exactly at Jow-field limit. Assuming that the applied field E is low enough we can derive
from (12) and (18) the following relationship:

1 o
PXT,T") = I WI)PXT, T.) dT. (19)

which permits us to find T*. Thus, our approach is to calculate T* from (19) and then
evaluate the errors introduced in P(7T, E) by such a replacement. Before finishing this
section it must be noted that we should not expect that T* remains the same for all
temperatures T where the polar regions exist, because of the way in which we introduced it.
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7. Simulation of dielectric properties of relaxors for the model ferroelectric

In this section we present the results of simulation of the dielectric response of relaxors.
The results of the analysis of static dielectric response of PMN, which have been presented
in section 5, allow us to perform the calculations over the wider temperature range, and
consider the frequency dependence of the dielectric properties of relaxors. Here we assume
that the polar regions behave as a model ferroelectric with second order phase transition with
well known free energy coefficients. For the second-order phase transition the calculations
are rather simple. The results of simulations will be compared with those obtained from
the experimental data for PMN. The comparison can be done here only qualitatively, since
the free energy coefficients of the chosen materials do not necessary coincide with those
for PMN (which are not known).

The elastic Gibbs energy of a ferroelectric with a rhombohedral structure, with reference
to the unpolarized state, is expressed in terms of a Taylor series expansicn in spontaneous
polarization F;. For simplicity, the series is terminated here at the fourth power of Py

(o) + ay2)
—S——P;. (20)
Spontaneous polarization depends upon the temperature as
2 Sa(f—1T)
P 2{en +oan)
The anisotropy energy density as a function of temperature is given by
3T —T)*
4(am + o)
As a model ferroelectric we have chosen Pb(Zry ¢ Tip 4)O3, which is a perovskite with a

second-order ferroelectric phase transition and a rhombohedral polar phase. The values of
its free energy coefficients are known and given by Haun et af [15]. They are equal to

o =2330x 10° m F!' k™!
oy = 1.362 x 10® m® €2 B!
ag = 2391 x 108 m* C2 F.

Calculations have been performed for T from the temperature range 100 K to 450 K. Every
time, when it was necessary to integrate over the distribution of the transition temperatures,
for the upper integration limit we chose T 5 plus three times the width of the distribution
of the transition temperatures, since beyond this limit the contributions to corresponding
integrals were negligible.

The results of calculations of T* with (19) have shown that it changes with the
temperature T of the sample in the following way. When T > 300 K temperature T*
increases with T, being always several tens of degrees higher than 7. Below 300 K T*
changes slowly, and below 200 K it stays constant and equal to 320 K (that is, to the mean
transition temperature T, ;). The maximum values of the errors introduced in P(T, E) by
the replacement of an ensemble of the polar regions have been estimated from equations
{A14) given in the Appendix. They are smaller that 10% in the temperature range from
140 K to 420 K. Thus, they are low enough to be neglected (at least, within the temperature
range 250 K to 400 K, where we studied polarization response). We can draw the following
conclusions. For the model of relasor behaviour presented in section 2 the substitution of
an ensemble of the polar regions with different values of the dipole moment by a system of

AG1 = '—Cq(Tc - T)-Ps2 +

@1

AG, (22)
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identical polar regions with the same magnitude of the dipole moment does not introduce
large errors. Such a replacement does not contradict the original assumption that all the
polar regions have different dipole moments, however, it aids in the analysis of experimental
data,
The static dielectric response was calculated from the formulae (12) and (13). The
r

static dielectric permittivity, e;, increases monotonically with decreasing temperature, the
behaviour being mostly determined by the factor 7! in (13). The integral

oo
f wWT) P2 dT,
T

in the same formula is less significant. Static polarization caleulated with (12) as a function
of the applied field at the fixed temperature has the shape of a non-linear curve and resembles
well the experimental P(E) data, which are shown, for example, in figure 1(b). It is
interesting to demonstrate the change in the orientation polarization with temperature at a
fixed value of the applied field. The value of the field of 35 kV cm™~! was chosen and
the polarization at this field was calculated as a function of temperature. We compare the
model and experimental values of the polarization at 35 kV cm™' in figure 10. Points
dencted as experimental were obtained from the measured values of the polarization by
subtracting the high-frequency contribution represented by . For the most part the model
qualitatively corresponds well to the experiment. However, at low temperatures (250 K)
the experimental values reach saturation, but the model ones still continue to grow. This
difference may be a sign that at low temperatures the properties of the material probably
undergo transformations which are not accounted for by the model.

: T
g 04 T
~— | —e—experiment| |
5 03 | ]
% ] .
7] - J
on 0.2 F _
= [ ]
= [ ]
2 |. )
g olf ]
5 ]
Q . ®
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Figure 10. The static orientation polarization at 35 kV cm™! caleulated from the model and
obtarned from the experimental data for PMN,

The complex dielectric permittivity was modelled by using equation (14). The value
of parameter 7, which enters the formula (4) for the relaxation time, was estimated as
2 x 10713 s (it is inversely proportional to the magnitude of the typical frequency of optical
phonons). The real part of the dielectric permittivity as a function of temperature is plotted
in figure 11(a) for several frequencies. The static permittivity is shown in the same figure for
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Figure 11. Real (¢") and imaginary {&"} pants of the dielectric permittivity as a function of
temperatore at several frequencies: {a) and (b), calculated from the model (the real part is given
in comparison with the static dielectric permittivity), (¢} and {d), measured in the experiment,

comparison. At high temperatures the relative permittivity coincides with the static one at
every frequency. On cooling, £'{w, T) at first deviates from ¢(T), then it passes through a
maximum and at low temperatures decreases to very small values. This actually means that
at low temperatures the majority of relaxators have relaxation times which are too long to
respond to the external electric field on a laboratory time scale. They appear ‘blocked’ in one
of the states. The imaginary part of the relative permittivity also passes through a maximum
on cooling (figure 11(b)). With increasing frequency the curve ¢"(w, T} shifts to higher
temperature without a change in the magnitude of the maximum value. The relaxation
time specirum calculated with (16) is shown in figure 12(a) for several temperatures. It
broadens with decreasing temperature and the maximum relaxation time in the spectrum
(which corresponds to largest z) tends to a very large value.

To summarize, simulations have shown the effect of the slowing down of fluctuations
of the dipole moments of the polar regions on the dynamic dielectric properties of PMN,
This slowing down occurs as a consequence of increasing local polanzation and decreasing
thermal energy of the crystal. It may qualitatively account for the behaviour of dielectric
permittivity which is usually observed in the experiment.

One can compare the behaviour of real and imaginary parts of dielectric permittivities
calculated according to the model (figures 11(a), (b)) with those measured in the experiment
(figures 11(c), (d)) and find certain discrepancies between the model and experimental data,
It is easy to explain the difference in the behaviour of ¢'{(ew, T) at high temperatures, above
~350 K. It could be attributed to the fact that model describes only orientation polarization
and does not take into account the high-frequency response. That is why in this mode) the
real part of the dielectric permittivity tends to zero at temperatures around 450 K.



Superparaelectrics with distributions of T, 4163

0.08 frr——m ; e
i a) —-200K| A
0.06 1} 1 — 250K,
AN e300 K|
o~~~ F i o
= FA B . ]
8 004f N\ J0K| J
&0 L \".‘ i
SN E
0.02F  \ ™ :
R s e ]
: S 7
0.00 Bt o T e 2 T e
0 10 20 30 40 50
z
0.10 e e
0.08 f
r model
o oot
N "
S L '|‘
0004 b N
I
0.02 |
0.00 Lomm o
0 10

Figure 12. Reloxation time spectrum for PMN at several temperatures: caiculated in terms of
the model (ay and given in comparison with the spectrum obtained from the experimental data
(b), z = In(z/w).

Perhaps the most serious discrepancy between the model and the experiment can be
found in the properties related to the relaxation time spectrum. One can obtain the function
g(z, T) from the experimental data by using the following approach (see [9] and [11], for
example). If the relaxation time spectrum is smooth and wide enough it can be calculated
from the imaginary part of the dielectric permittivity measured at different frequencies at
temperature T as
28"z, )

gz, T) = =

7 e (T) @

where £(T) is the static dielectric permittivity at temperature T, and the magnitude of z
is calculated as z = In(1/w7y) with @ as measurement frequency and 1o = 2 x 1073 s.
Assuming that the condition of smoothness and broadness of the spectrum is fuifilled for
relaxors, Colla et af [11] have shown that for the PMN spectrum in a wide temperature
range has the shape of a broad regular function with a maximum, and tending to zero
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values at both long and short relaxation times. Taking the data on the low-field dielectric
permittivity we calculated the values of the function g(z, T) with equation (23} at two
temperatures and plotted them in figure 12(b) (drawn by lines with circles). The spectrum
calculated from the model is shown in the same plot (drawn by lines only). The interval
of z within which experimental curves are plotted is limited by the frequency range used
in the experiment—20 Hz to 1 MHz. At two selected temperatures experimental curves
represent only a long-relaxation-time tail of the spectrum. It is seen that spectrum has a
rather abrupt edge at long relaxation times. In contrast, in the model the function g(z)
tends to zero gradually when z — oo. The properties of the spectrum at long relaxation
times may explain the difference in the behaviour of £'(w.T) at temperatures where it
deviates from the &{(T)—around 300 K in figure 11{a) (model) and 250-300 K in figure
1lc (experiment). An apparent ‘cut-off® in the relaxation time spectrum, at around z =
25 (figure 12(b)), makes it possible to specify the frequency range where the dielectric
permittivity will display relaxation behaviour and where it will be frequency independent.
However, in the case of a gradual decrease of g(z), as predicted by the model, frequency
dispersion would be observed in the whole frequency range below 1/1.

It seems also that the properties of the short-relaxation-time limit of the spectrum (z & 0)
are different in the model and what is observed in practice. It has been already mentioned
that Colla er al [11] have shown that for PMN, g(z) — 0 as z — 0 in a wide temperature
range. From the model applied for the ferroelectric with second-order phase transition it
follows that the function g(z, T) diverges at z — 0 as 1/./7 for every temperature involved
in simulations (this is seen from equations (17) and (22)). The divergence of g(z, T) directly
follows from the model; however, its meaning is not clear. The important thing is that the
number of relaxators having values of z within the limited interval is equal to

f gz, Ty dz
[+]

and does not diverge as 7 — 0.

8. Discussion

Crystalline disorder, which is a common characteristic of relaxors, may cause the distribution
both of the local transition temperatures of the polar regions and their sizes. In previous
papers [7, 8] the effect of the distribution of the size of the polar regions on the dielectric
properties of relaxors has been demonstrated. Here we attempted to investigate the second
possibility, the distribution of the local transition temperatures.

The model presented in this paper considered a relaxor as an ensemble of non- interacting
polar regions, the dipole moments of which can be oriented by the external electric field.
As a first test for the model we tried to fit it to experimentally measured static polarization
of PMN as a function of the electric field and temperature. Using only one assumption,
that the number of the polar regions is temperature dependent, the change of the static
polarization of PMN was described in a temperature interval of 150 K, and electric field up
to 35 kV em™!,

However, to find the size of the polar regions, and the distribution function of the local
transition temperatures, an additional assumption, that all the polar regions have the same
size, {, was required. The value of / was estimated as a low- temperature limit of the size
of the crystal volume containing a single polar region plotted in figure 7. It was found to
be equal to 30 A, in good agreement with the estimate suggested by structural study of
PMN and equal to 100 A [12]. The distribution function of the local transition temperatures,
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y(T;), was calculated from the temperature dependence of the concentration of the polar
regions (figure 3). It was found that y(T;) can be described with a Gaussian function (11),
parameters of which have been evaluated.

The model was tested again through the simulation of the dielectric properties of relaxors
using the obtained results for / and y(¥;). The polar regions were treated as ferroelectrics
with a second-order phase transition. It was shown that it was possible to have maxima in
the temperature dependences of the real and imaginary parts of the dielectric permittivity
for a finite frequency w, which are usually observed in the experiment. The peaks are
caused by the effect of the slowing down of the relaxation time 7 of the polar regions. For
individual regions, T increases on cooling below the local transition temperature as a result
of increasing magnitude of the anisotropy energy density between the stable states (22} and
decreasing thermal energy of the crystal. The widih of the relaxation time spectrum g(z, T)
becomes larger on cooling, also due to the increasing values of the relaxation times of the
polar regions.

However, the model could not fully account for all the details of the frequency
dependence of the dielectric properties. The calculated imaginary part of the dielectric
permittivity differs markedly from that observed for relaxors (shown in figure 11d). The
model aiso predicts that the relaxation time spectrum is a function monotonically decreasing
with increasing v. At the same time, the experimental data [11] suggest that the spectrum
has a maximum.

Two possible reasons for the disparities listed above can be pointed out: the use of
a unique value of [ in the calculations and/or the fact that the interaction between the
polar regions was not taken into account. One can expect that the distribution of { plays a
substantial role in the dynamic behaviour of relaxors. Although the distribution, either of
the local transition temperature or the size of the polar regions, leads to frequency behaviour
of the real part of the dielectric permittivity which is in good qualitative agreement with
the experimental data, the latter seems 1o be more important. This is suggesied by the
comparison of the resuits of the present paper with those of the previous work. The maodel
[7] with an unique transition temperature, but distribution of the size of the polar regions,
yielded a behaviour of &’(w, T} similar to the present model, but much better behaviour of
e"{w, T) [7] and the relaxation time spectrum [16].

9. Conclusions

The model for relaxors as superparaelectrics with a broad distribution of the local transition
temperatures and 2 unique size of the polar regions has been investigated. It has been
shown that the distribution can explain well the static polarization response and the real
part of the dielectric permittivity of relaxors. However, the behaviour of the imaginary part
of the dielectric permittivity and the relaxation time spectrum was not fully accounted for.
It has been concluded that even though the model with a distribution of T, but unique size
reproduces qualitatively well some experimentally observed features of relaxors (the shift
of the peaks in temperature dependence of the real and imaginary parts of the dielectric
permittivity with frequency and broadening of the relaxation time spectrum on cooling),
the distribution of the size of the polar regions seems to play a more important role in
controlling the dynamic properties of relaxors.
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Appendix

The model presented in this paper assumes that it is the temperature T; of the local
phase transition which determines the difference in the values of dipole moments of
individual polar regions. The function y(T;) describes the distribution of the local transition
temperatures of the polar regions. At a given temperature T, only the regions with T, greater
than T coniribute to the orientation polarization P(T, E). Therefore, the macroscopic
polarization of the relaxor due to the alignment of the dipole moments of the polar regions
parallel to the direction of the external electric field can be written in the form

P(T.B) = [ WINf (T, To, E) dT,
7 (AD)

L
1.7 B) = Ry Tyann (BT T

3kT

The volume fraction {or the total number; for the present model this is the same, since the
size of the polar regions, [, is constant) of the polar regions in the relaxor at temperature T
is given by the value of ¥ (T}

Y(T) = f WT2) dT (A2)
T

Equation (A1) may be rewritten as

oC
P(T, BE) = Y(T)f RITT)F(T, T, BYdT, (A3)
0
where function A(T, T;) is defined as
| YRy T I.2T

In section 3 in order to facilitate the analysis of the experimental data we suggested
substituting an ensemble of different regions by a system of identical ones, so the magnitude
of the dipole moment is the same for all the regions. In terms of the local transition
temperatures such a replacement means that all the polar regions have a unique temperature
of the phase transition, which we denote as T* (obviously, T > 7). Mathematically this
may be expressed as the expansion of function (T, T} in terms of delta function 8(T.—T"):

AMNT.—T*) a3 8*85(T,—T%

A(T, T = —T* —

(T T)=a08(T. — T +a aT, > 3Tz (A5)
This equation is similar to the expansion of the electric potential of the localized charge
distribution in terms of multipoles. Coefficients ag, a;, a3, ... in (A5) may be found as

3
ao=f h(T, T)dT. =1
Ooo
a=[ E-TIha T o (A6)

az—f h(T T.) dT;
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etc.

They depend upon the temperature T, T* and. a function k{7, T;). For brevity we
terminated the expansion in (A5) at the third term. If we substitute now function A(T, 1)
from (AS5) into equation (A3) we obtain

af(T. T., E
P(E, T)= Y(D)f(T.T," B) —a, ¥(T) L(_BT___)
[0 T;_-:T‘
G2 azf(T, T, E)
+3 ¥ ———-——aTcz . . (AT)

We can rewrite it in the following form:
PE DY=YTT, T EYl-5P+&P] (AB)
with §,.P and §,.P given by

a  8f(T. T, B
P =
(T, T* B) 3T, e "
b a 82 f (T, T., E) (4%
T 2F T T B aT? _—

The first term in (A7) and (A8) we use in section 5 to model the orientation polarization
behaviour of the relaxor. We can write it explicitly:
P(T, T*)-I’E
3kT '

Two others, & P and §; P, will be considered as the errors brought about by the replacement
of an ensemble of the polar regions.

Function f(T, T;, E) is a complicated non-linear function of T,; it depends explicitly
on P, which, in turn, depends upon T,.. We can simplify the expressions for §,P and &, P
in the following way. For example, we can modify the expression for 8| P as

P(E, T) = Y(T)P(T. T*)tanh( (A10)

a) af
EFT e
__a_ ¥Rl _m iR l_@: _P_} (Ath)
F(I* aP 3T, |y Fi 3T |peq. | P g F(T

For a given temperature T, the magnitude of the expression in the curly brackets depends
upon the value of the applied field E. It is straightforward to show that its absolute value
is limited to two. Therefore, we can obtain that

ay 3.Ps
HP €£2— . Al2
15 = P, 3T, _— ( )
In the same way one can show that §; P is limited by
8, (aP\* 8 3P,
. P = — | — — Al3
2 a (Ps2 (BTC) + Pz )| _. (A13)

Coefficients & and #; come from expressions similar to that given in the curly brackets in
(All):

8 = &f Py g = _BL P
'8P g £ (T T B ST
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They both are positive values, smaller than two.

When we know the temperature dependence of the spontaneous polarization P, of the
model ferroelectric, the function y(7;) and the value of T*, we can estimate the magnitudes
of the correction terms and evaluate the precision of the model.

In the case of a ferroelectric with a second-order phase transition which has a low-
temperature phase with a rhombohedral structure the temperature dependence of the
spontaneous polarization is given by equation (22) (section 7):

p? 3 (T, —T)
o 2 o)

Therefore, from (A12) and (Al3) one may easily obtain expressions for the estimates of
the errors:

&P < ——Tfl -
— (Al4)
5P < f"’;.(e’_fz_)z,
8(T*—7)

For a ferrozlectric with a second-order phase transition the magnitudes of §, P and 5. P do
not depend on the values of the free energy coefficients.

References

[1] Smolensky G A, Isupov V A, Agranovskaya A I and Popov S N 1961 Sev. Phys.—Solid State 2 2584
[2] Bokov V A and Myl'nikova I E 1961 Sov. Phys.~Sofid State 3 613
[3] Smotensky G A 1970 J. Phys. Soc. Japan Suppl. 26 28
[4) Kirlloy V V and Isupov V A 1973 Ferrvelectrics 5 3
[51 Cross L E 1987 Ferrvelectrics 76 241
[6] Vichland D, Li } F, Jang 8 J, Cross L E and Wuttig M 1991 Phys. Rev. B 43 8316
(71 Bell A J 1993 J. Phys.: Condens, Matter 5 8773
{8] Bell A J and Glazounov A E 1994 Br, Ceram. Proc, 5229
{9] Dorogovisev S N and Yushin N K 1990 Ferroelectries 112 27
[10] Viehland D, Jang 8 J, Cross L E and Wuttig M 1990 J. Appl. Phys. 68 2916
{11] Colla E V, Koroleva E Yu, Okuneva N M and Vakhrushev § B 1992 J. Phys.: Condens. Mutter 4 3671
[12] de Mathan N, Husson E, Calvarin G, Gavarri J R, Hewat A W and Morell A 1991 J. Phys.: Condens. Matter
38159
[13] Von Hippel A 1954 1993 Dielectrics and Waves (Cambridge, MA: MIT Press)
[l4) Burcher 5 ) and Daglish M 1993 Third Eura-Ceramics, Pruc. 3rd European Ceramic Soc. Conf. (Mudrid,
7903) vol 2 (Faenza: Edtitrice Jberica) p 121
[15] Haun M J, Zhang Z Q, Furman E, Jang S J and Cross L E 1989 Ferrnelectrics 99 45
[16] Bell A ) 1994 unpublished



