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Abstract A model of r e h o r s  as superparaelecmcs with 3 distribution of the local uansition 
temperature has been investiffated. The necessary model p w m d e r s  are obtained from the 
analysis of the static polariwrion response of lead mapesium niobate and then employed in 
simulations of the frequency-dependent dielectric properties. 

The present model is compared with 3 previously published model of relaxon. based on 
a single transition temperature but with a distribution of the size of the polar regions. Both of 
them describe some chsacterisric features of relaxon. i.e. me shift of the penks in tempemure 
dependence of the real and imaginaty parts of the dielectric perminivity with frequency and 
the broadwing of the relaxation time s p e c "  on cooling. However, a model which takes into 
nccount the distribution of the size of the polar regions describes qualitatively correctly the shape 
of the relaxation time specmm. 

1. Introduction 

Relaxor ferroelectrics (or relaxors) attract much interest. from the viewpoint of both 
practical applications and pure science. Amongst these compounds, lead magnesium niobate 
Pb(Mgl/3Nbz,j)O3 (PMN) is considered as a model material, and, therefore, has been the 
focus of much research during the last thirty years. 

The basic dielectric properties of PMN. in both ceramic and single-clystal form, have 
been reported by Smolensky er nf [I], and Bokov and Myl'nikova [2], respectively. The 
temperature dependence of the relative dielectric permittivity, E', of PMN has a broad peak. 
The temperature of the peak (T") and its magnitude (E- ) depend upon the frequency w of 
the applied electric field in the radiofrequency range. With increasing w, T,, shifts toward 
higher temperatures and &km decreases. Below T,, the dielectric permittivity of PMN 
displays strong relaxation dispersion in the radiofrequency range. At low temperatures, the 
macroscopic polarization. P. as a function of the electric field, E ,  shows a large hysteresis, 
which decreases with increasing temperature and disappears close to T-. For temperatures 
higher than T,,, polarization is a single-valued non-linear function of the field. Since that 
time much information about the properties of PMN. at temperatures both above and below 
T,,, has been published. 

The dielectric properties of relaxors are generally explained in the literature in terms 
of small polar regions. The latter are defined as separate regions of the crystal which 
have nanometre scale size and possess spontaneous polarization. The dielectric response is 
interpreted as a result of reorientation of the local polarization vectors (P,) under applied 
electric field. However, an origin of the polar regions and how they control the dielectric 
properties of relaxors as a function of temperature and frequency are still matters of debate. 
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Several attempts have been made to model the dielectric response of relaxors using various 
hypothcses concerning the origin and behaviour of the polar regions. 

Smolensky and Isupov originally introduced a concept of the ‘diffuse phase transition’, 
resulting from composition fluctuations on a microscopic scale (this model is mostly known 
from the review given by Smolensky [3]). The phase transition into the polar state occurs in 
separate regions of the crystal, with a size of 1 W 1 0 0 0  A, independent of one another, with 
the local transition temperature, T,, depending upon the composition of the individual region. 
The dielectric response was interpreted as a switching of the local spontaneous polarization 
between states with different orientations of the vector Ps. At a given temperature T, 
only regions of which the local T, is close to T contribute to the macroscopic dielectric 
response, since the activation energy required to switch the polarization in the region 
increases drastically with temperature below T,. Kirillov and Isupov [4] attempted to model 
the dielectric permittivity of PMN using this concept of the temperature dependence of 
the number of relaxing regions. Even though they obtained a good fit to the dielectric 
permittivity as a function of temperature, the frequency dispersion was not described well. 
In their model dielectric relaxation is of Debye-type; however, CoIe-Cole plots suggest a 
broad distribution of relaxation time [I]. 

He 
visualized them as consisting of small non-interacting polar regions each with a local 
spontaneous polarization. Cross postulated that since ferroelectricity is a cooperative 
process, the energy involved with every polar region must scale with volume and that for 
regions with a size of -100 A the potential barrier required to reorient the local polarization 
vector would be comparable to the thermal energy of the crystal. Thus, thc local polarization 
in each region can fluctuate under the thermal agitation. According to this model all the 
polar regions contribute to the orientation polarization, and, on cooling, the temperature and 
frequency dependence of dielectric permittivity is due to slowing down of the fluctuations 
of the local polarization vectors. 

Viehland et al 161 tried to f i t  electric field dependences of the polarization in a 
wide temperature range from below T,, to high temperatures. In their model. rclaxors 
were formally compared with magnetic spin glasses and were envisaged as consisting of 
interacting polar regions. with polarization fluctuations occurring above the static freezing 
temperature. 

Recently Bell [7] proposed a method for calculation of the dielectric properties of 
a superparaelectric. The approach was to treat individual polar regions as classical 
ferroelectrics and employ the Landauainsburg-Devonshire (LOD) theory of ferroelectrics to 
describe the temperature dependence of their parameters. Unlike the Smolensky and Isupov 
model [3], he used a single transition temperature and implied that the whole volume of 
the crystal is occupied by the polar regions. The calculations were performed for the 
fictional superparaelectric Pb(Zro,,Tio.~)O,. Bell 171 compared several possible scenarios 
of dielectric behaviour and in some cases attained a good resemblance to the observed 
behaviour. Particularly good results were obtained when a distribution of the sizes of the 
polar regions was introduced into the calculations. In subsequent work [8] an attempt was 
made to use the same approach and simulate the dielectric response of PMN taking the 
numerical values of the model parameters estimated from the experimental evidence for 
this material. Despite some discrepancies, the model appeared to give satisfactory results 
for the dielectric permittivity in the temperature range around T-. 

It is a characteristic of relaxors that their dielectric properties are controlled by a 
broad spectrum of relaxation times [9-111. In [7] the spectrum was brought about by 
the distribution of the sizes of the polar regions. However, there is another possible origin 
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Cross [5 ]  suggested that relaxors might be considered as superparaelectrics. 



Superparaelectrics with distributions of T, 4147 

of the spectrum of relaxation times, namely, the distribution of local transition temperatures. 
This second possibility has not yet been fully tested. 

The purpose of this paper is to explore a model which considers relaxors as 
superparaelectrics with a distribution of local transition temperatures and to clarify how 
well the latter may account for the dielectric properties of these materials. The model will 
be introduced in the second section of the paper, using PMN as a model material. As a 
first test we shall fit the static polarization of PMN as a function of the applied electric field 
and temperature to the model. An approach to data analysis, the experimental part and the 
results of the fitting will be presented in the third, fourth and fifth sections of the paper, 
respectively. Then the model will be tested again through the simulations of the dielectric 
response, both static and dynamic, of relaxors in a wide temperature range, and comparison 
of the results of the simulations with the experimental data. The calculations will be carried 
out using the results of the analysis of the experimental data reported in the fifth section. 

2. The model 

The model presented in this paper is based on three well known ideas. 

(a) Chemical heterogeneity, which is a common characteristic of all relaxors, plays the 
key role in the formation of microscopic polar regions [3]. As similar cations (Mg2’ and 
Nb5+ in the case of PMN) are randomly distributed in the crystal lattice, it may happen that 
on the microscopic scale there exist regions within which the concentrations of Mg2+ and 
Nb”+ are constant, but differ from one region to another. It is reasonable to expect that this 
scale is of the order of IO to 1000 A-larger than the size of the unit cell, but much smaller 
than the size of the crystal or a single ceramic grain. A distribution of the composition of 
such regions results in T,, temperature of the transition into a polar state, varying from one 
region to another. 

@) These microscopic regions are independent from each other [3, 51. 
(c) The small size of the regions makes it possible to reorient the direction of the local 

polarization vector rather easily, unlike the normal ferroelectrics 151. That is, below the 
local transition temperature each region behaves as a single dipole moment. 

The model considers relaxors as an ensemble of non-interacting polar regions. The 
polar regions have a finite size 1. which is equal for all the regions. Each region behaves as 
an independent, normal ferroelectric with a local transition temperature TCj, below which it 
possesses local. temperature-dependent, spontaneous polarization Ps.;. For convenience we 
introduce here a dipole moment pi of the individual region, which is given by p; = PJ3. 
There is a distribution of the local transition temperatures, and the number of polar regions, 
thus, changes with temperature. At a given temperature T ,  the total number of the polar 
regions is nT, and they occupy only a certain part of the crystal. On cooling, new polar 
regions appear, and their number and volume fraction in the crystal increase. The rest 
of the crystal volume is considered as a dielectric with isotropic properties (it is usually 
said that the polar regions are embedded in an isotropic dielectric matrix). Structural data 
[12] suggest that the polar phase has rhombohedral symmetry. As the polar regions do not 
interact with one another the local polarization vectors in different regions are randomly 
oriented in the eight (111) pseudocubic directions allowed by the rhombohedral symmetry. 
Thus, in the absence of the extemal electric field the crystal is macroscopically isotropic 
and the macroscopic polarization is equal to zero. 
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2.1. Dielectric response of relaxors 

There are two contributions to the macroscopic dielectric response of relaxors: orientation 
and high-frequency polarization. The latter represents the pure response of the crystal lattice 
to the applied electric field and is characterized by the high-frequency dielectric permittivity 
em. Orientation polarization results from the alignment of vectors of the dipole moments 
of individual regions parallel to the direction of the applied electric field. 

In the static case each polar region contributes to the orientation polarization a 
component (p,) in the direction of the applied field. For the polar regions with rhombohedral 
symmetry the value of (p i )  can be written [7] as 

The total polarization due to orientation of the dipole moments is equal to the sum of the 
contributions from individual regions. Thus, the static macroscopic polarization can be 
presented in the form 

where V,, is the volume of the crystal, EO is the dielectric permittivity of the vacuum and 
( p i )  is given by (I) .  

The low-field static relative dielectric permittivity can be obtained from (2) as a 
derivative of P ( T ,  E )  with respect to the field at the limit E -+ 0: 

In the fast-changing electric field, when dielectric properties of relaxors are frequency 
dependent, each polar region behaves as an independent Debye-type relaxator with its 
relaxation time r .  The reorientation of the local spontaneous polarization vector of a single 
region between equivalent states is considered to be a thermally activated process with an 
energy barrier between the stable states depending upon the anisotropy energy density, AGa, 
and the volume of the polar region. and equal to AGJ3. A relaxation time is, therefore, 
given by 

~c.13 
r = roexp ( T )  . (4) 

From the LGD theory of ferroelectrics, the value of AG;, depends upon the magnitude 
of the local spontaneous polarization, P,.i. and the local transition temperature. Tc,i. At 
temperature T within the temperature range where the polar regions exist, a distribution of 
relaxation times in the relaxor stems from the distribution of transition temperatures: there 
coexist regions with long relaxation times (and high transition temperatures) and short ones 
(regions have appeared a few degrees above T ) .  The dielectric properties are represented 
as a superposition of individual relaxators, each of them giving the contribution depending 
upon its relaxation time. The complex relative dielectric permittivity &‘(U, T )  can be found 
as 

with a relaxation time r given by (4). 
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Here we should emphasize the difference between the present model and that of 
Smolensky and Isupov [3,4]. In their model the sum of the contributions from the individual 
polar regions was also employed. However, the summation was performed only over the 
regions of which local T, was equal to the temperature T .  On the other hand, in the present 
model all the polar regions with T, 2 T contribute to the dielectric response. Therefore, 
in the Smolensky and Isupov model the number of the polar regions, n 7 ,  would represent 
the distribution function of the local transition temperatures, but here it corresponds to the 
cumulative distribution function. This difference will become clearer later, in the analysis 
of the experimental data. 

The behaviour of the dielectric response of a relaxor, given by equations (2), (3) and 
(5). is controlled by the distribution of the local transition temperatures: the magnitudes of 
p; and r are functions of Tc.i, and n7 depends upon the distribution of Tc.,. The dielectric 
permittivity E, has been introduced as an average value for the crystal; however, it also 
depends on the distribution of Tc,c. In order to judge how accurate the hypothesis about the 
distribution of the local transition temperatures is we are going to compare the temperature 
and frequency dependence of the dielectric response predicted by the model, i.e. equations 
(2). (3) and (3, in a wide temperature range with that measured during the experiment. 
The required model parameters will be obtained from the analysis of the static dielecbic 
response of PMN. An approach to data analysis will be given in the next section. 

3. An approach to data analysis 

Equations (1) and (2) describe the static dielectric response and assume that the polarization 
is a single-valued function of the applied field. They cannot be used in the case when 
the polarization is frequency dependent or hysteretic. Actually, in relaxors the onset of 
dielectric hysteresis in P ( T .  E )  and frequency dependence of dielectric properties start to 
be observed at the same temperatures, around T-. Thus, to test the model we should 
analyse the electric field dependences of induced polarization at temperatures above Tma. 

However, equations ( I )  and (2) may not be applied in their present form to the analysis 
of experimental data, for we do not know anything about the distribution of the transition 
temperatures. Instead, at temperature T we suggest replacing the system consisting of n7 
polar regions with different values of the dipole moments p; by an ensemble of n7 identical 
polar regions with the same magnitude of the dipole moment p .  The value of p is such 
that the macroscopic polarization is the same for both systems at a given temperature T :  

P(T, E )  = Nptanh (”,;,”) - +coc,E. 

Hereafter we shall call p the dipole moment of the polar regions in the sense that it is the 
same for all the regions. In (6) we introduce the concentration of the polar regions N as 
N = nT/V,,. 

The suggested replacement of an ensemble of the polar regions brings about a certain 
error in P(T, E),  though we believe that the error is not large, since we are considering 
the static response. The dipole moment of each polar region is a slowly changing function 
of temperature, and, therefore, the distribution of the values of pt at a given temperature 
T .  originating from the distribution of Tc,j, is  insignificant. In the case of the dynamic 
response one must take into account the relaxation times r of individual regions (4), 
which change exponentially with temperature. Thus, the distribution of the local transition 
temperatures will produce a broad distribution of 5 ,  which one cannot replace with an 
average single relaxation time. Still, we understand that even for the static response the 
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suggested replacement needs quantitative justification. To do so we should have information 
about the function describing the distribution of the local transition temperatures. For the 
moment this function is unknown, but we expect to obtain it from the analysis of the 
data. For the present we take (6) for granted and shall discuss the self-consistency of the 
approach later, in section 6. The number of polar regions, nr, represents in the model the 
cumulative distribution function of the local transition temperatures. After the replacement 
of an ensemble of the polar regions the value of n7 (or the concentration N) does not 
change. An analysis of the experimental data will yield the temperature dependence of 
N ,  from which we can find the distribution function of the local transition temperaturcs. 
Equation (6) is already more suitable for the analysis of experimental data. It contains 
three independent parameters-N, p and E,. They are all temperature dependent. The 
correct way, therefore, would be to fit equation (6) to the experimental data for electric field 
dependences of the induced polarization at a given temperature and find the values of N, 
p and E-. However, with three parameters unambiguous fitting is not possible: the results 
are strongly dependent upon the method of fitting. 

To reduce the number of fitting parameters we introduce experimental data concerning 
the tcmperature dependence of the low-field static dielectric permittivity, E:, of PMN. From 
equation (6) .e: can be obtained as 

A E Glazounov et a1 

+ &6, , N P Z  
E ,  = - 

3 k T ~ o  
It is similar to the expression for static dielectric permittivity which is usually applied to 
describe the orientation polarization of polar dielectrics [13]. Let us assume that in the 
low-field limit this formula is also valid in the case of the orientation polarization of an 
ensemble of the polar regions. By using this assumption, we can combine equations (6) 
and (7) in the form 

where only two parameters, p and N. are involved. 
To summarize, in order to analyse the polarization response of PMN in terms of the 

proposed model we shall use equation (8). For that we need to know the induced 
polarization P as a function of the applied field and the value of the low-field static dielectric 
permittivity E:. 

4. Experimental details 

Single-phase PMN powder was produced according to the method of Butcher and Daglish 
[14]. Pressed pellets were sintered at 1225 "C for 2 hours using a PMN atmosphere powder. 
The density of the sintered samples was about 98% of the theoretical. Gold electrodes were 
sputter deposited on the polished surfaces of the pellets. 

The induced polarization of PMN ceramics as a function of the applied electric field was 
measured using a virtual Sawyer-Tower circuit at different temperatures within the range 
from 133 K to 393 K at 10 K intervals. The highest frequency in these measurements 
was equal to 25 Hz and the lowest one to 0.1 Hz. Measurements were performed for two 
amplitudes of the applied field E,. An amplitude of 35 kV cm-' was applied in order 
to obtain saturated polarization curves at fields as high as possible for the given ceramic 
sample before dielectric breakdown would occur. At the same temperatures, polarization 
was measured at E ,  = I kV cm-' in order to calculate the relative dielectric permittivity in 
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the low-field limit. The amplitude of the applied field of 1 kV cm-’ was the lowest value 
imposed by the equipment and dimensions of the sample. The waveform of the applied 
field was triangular. 

The real and imaginary parts of the dielectric permittivity were measured using a 
HP 4284 A LCR meter, over five decades of frequency (20 Hz-l MHz), and over the 
temperature range 170-450 K. These ‘standard’ dielectric measurements are for the purpose 
of comparison of the temperature and frequency behaviour of the low-field permittivity 
calculated from the model with that observed in the experiment. 

Temperature control in both experiments was maintained with a Delta Design 9023 
temperature chamber. 

The electric field dependences of the induced polarization measured at 35 kV cm-’ are 
shown in figures ](a) and I(b) for several temperatures, and are similar to those reported in 
the literature 11. 21. At low temperatures rather rectangular dielectric hysteresis loops are 
observed. With an increase in temperature loops become tilted, having values of remanent 
polarizaton and coercive field which decrease with increasing temperature. At higher 
temperatures dielectric hysteresis disappears, and polarization is a single-valued function 
of the applied field. The polarization plotted against the field has the shape of a non-linear 
curve with a saturation reached in high field. With increasing temperature the magnitude 
of the electric field needed to reach the saturation becomes higher (figure l(b)). At high 
temperatures, at 373 K i n  figure l(b), the saturation is not observed at 35 kV cm-I; however, 
the non-linearity of the polarization is still noticeable. 

The electric field dependences of the induced polarization measured at E ,  = 1 kV cm-’ 
at low temperatures have the shape of an ellipse and at higher temperatures become a 
straight line. The values of E’ and E” calculated from the low-field polarization data (at high 
temperatures E” = 0 within experimental error and E’ is equal to the slope of a straight line) 
are in good agreement with those which have been measured with conventional techniques. 

In PMN the temperature at which dielectric hysteresis appears on cooling depends upon 
the measurement frequency. For the lowest frequency used in these experiments the ‘onset’ 
temperature is between 243 and 253 K. 

5. Analysis of the experimental data within the model 

For the lowest frequency used in the polarization measurements, 0.1 Hz, dielectric hysteresis 
is observed at temperatures below 250 K. Therefore, at temperatures above 250 K we can 
take values of the induced polarization and relative permittivity measured at 0.1 Hz as static 
ones and use them in equation (8) as P ( T ,  E )  and E: respectively. At every temperature 
above 250 K the experimental data for the permittivity and P(T, E )  have been modified 
in the form E~EDE - P and fitted to equation (8) using N and p as parameters. The 
experimental electric field dependences of the polarization at each temperature were first 
smoothed using a locally weighted least-squares error method. This was done in order to 
reduce the scatter of the data, because even a very small experimental error, A P ,  which 
is insignificant in comparison to the total value of measured polarization, becomes very 
important for the function E~EOE - P,  especially at high temperatures. Such a scatter in 
the data may produce a large uncertainty in results of the fitting with (8). The results have 
shown that the fit of the experimental data to equation (8) with only two parameters is 
unique. 

When the parameters N and p are known, one can calculate saturation polarization, PmI, 
when all the dipole moments are parallel to the external field, the size L of the volume of the 
crystal containing a single polar region, E; which is a contribution from the orientation of 
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the dipole moments to the dielectric permittivity of the crystal and high-frequency dielectric 
permittivity E,, by using the following formulae: 

NP2 
Ep = - 

3 k T ~  

E ,  = ES - EP (94 
where E: is the static permittivity measured in the experiment. 

The dipole moment of the polar regions (figure 2) and the concentration of the polar 
regions in the crystal (figure 3) increase with decreasing temperature.. Their temperature 
dependences within the temperature range addressed may be described rather well by a 
linear function. The saturation polarization as a function of temperature is shown in figure 
4 in comparison with the polarization measured at 35 kV cm-'. The magnitude of P,. tends 
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to zero at temperatures above 410 K. On cooling, the saturation polarization increases and, 
at temperatures around 250 K, it becomes very close to the magnitude of the polarization 
measured at 35 kV cm-'. Dielectric permittivity E; due to the orientation of the dipole 
moments is not shown here; it drastically increases in the range from 370 K to 250 K 
as a result of increase in p and N with decreasing temperature T .  At high temperatures, 
approximately above 410 K, E; + 0. The high-frequency dielectric permittivity, E-. was 
calculated with (9d) and its temperature dependence is shown in figure 5. On cooling, 
E- goes through the maximum value at temperatures around 350 K. Above 410 K, where 
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e; x 0, the measured dielectric permittiviry coincides with E,. 

In order to estimate the quality of the fitting of the experimental data to equation (8) 
we used the obtained values of p, N and E~ to calculate a total polarization response with 
equation (6)  and compare it with the experimental data on P(T, E) .  At every temperature 
from the range above 250 K there was a very good agreement between the experimental 
values of the polarization and those calculated from the obtained parameters of the model. 
For example, figure 6 shows both measured and calculated polarization curves at 293 K. 
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the size of the polar regions as being equal to 30 A. The value of 1 obtained in this way is in 
good agreement with the estimate of the size of the polar regions suggested by a structural 
study of PMN and equal to 100 A [12]. 

Now, when the value of the size of the regions is known, we can find an average local 
spontaneous polarization corresponding to the dipole moment p by Ps,av = p/13. The 
temperature dependence of Ps,av, is shown in figure 4. 

The concentration of the polar regions N as a function of temperature represents the 
distribution of local transition temperatures. Just above we discussed the fact that the size 
of the volume of the crystal containing a single polar region at low temperatures, below 
250 K, tends to the limit value equal to the size of the polar region. This actually means 
that at low temperatures the concentration of the polar regions reaches its saturation value 
and the whole volume of the crystal is occupied by the polar regions. Therefore, within the 
temperature range 250 K to 390 K we can normalize the concentration N to its saturation 
value, which is equal to I-' % (30A)-?. and introduce a cumulative distribution function 
of the transition temperatures Y as 

A E Glazounov et d 

Y = N(30 Ay. (10) 

Following Smolensky and Isupov [3] we asume that the distribution of local transition 
temperatures is given by a Gaussian function around a mean value of the Curie temperature, 
Tc,m. with a width of distribution UT 

In this case a cumulative distribution function is described by the error function: 

erf(T) = y(T,)  dT,. Lm 
A good fit of Y to erf(T) was obtained for the following parameters: the mean transition 
temperature re.,,, = 320 K and UT = 60 K. Figure 8 shows the result of the fitting. 

Before finishing this section we can make preliminary conclusions about the change in 
the magnitude of the two contributions to the polarization response. the high- frequency and 
orientation polarizations. At high temperatures (about 370 K) the polarization is due to the 
response of crystal lattice rather than orientation of the dipole moments of the polar regions. 
On cooling the contribution from the orientation polarization increases, and around 250 K 
it becomes dominant over the response of the crystal lattice. The reason for this is that 
the magnitude of the dipole moment p and the concentration N of the polar regions both 
increase with decreasing temperature. The latter, however, plays the more important role in 
this process. This can be concluded from the comparison of the temperature dependences 
of PSa and Ps.av plotted in figure 4. Within the studied temperature range, 250 K to 390 K, 
Ps,av does not change significantly, whereas P,,, drastically drops to very small values at 
temperatures around 390 K. At the same time at high temperatures Ps., has a rather high 
value of about 0.20 C m-2. Therefore, it is the concentration of the polar regions which 
enters the formula for the saturation polarization (9a) and accounts for its drastic decrease 
at high temperatures. 

6. The dielectric response of relaxors calculated from the model 

In the previous section we analysed the static dielectric response of PMN in order to obtain the 
model parameters as a function of temperature. Here we shall present a way of calculating 
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using 

the dielectric response of relaxors, both static and dynamic, in terms of the model introduced 
in section 2. We shall consider only the polarization due to orientation of the dipole moments 
of the polar regions. We do not take into account the high-frequency response, &k, although 
it also can be modelled. We shall also present the verification of the validity of the approach 
which we described in section 3 and used in the analysis of the experimental data. 

Still working within the model described in section 2 we use three basic assumptions 

(a) We consider a relaxor as an ensemble of non-interacting polar regions. Each region is 
an independent, normal ferroelectric with the low-temperature phase with a rhombohedral 
symmetry. The magnitude of a local spontaneous polarization Ps of individual regions 
depends upon the local transition temperature T, and the temperature T of the crystal and 
may be found in terms of the LCD theory of ferroelectrics. 

(b) The distribution of local transition temperatures of individual regions is described by 
a Gaussian function ( I  I )  with the values of the parameters taken from the results presented 
in the previous section. They are equal to Tc,m = 320 K and UT = 60 K. 

(c) All the regions have the same size I equal to 30 A. 

6. I .  Dielecfric response 

In previous sections it  was convenient to use in all the expressions the dipole moment of 
the polar regions. Now, since we are trying to simulate the polarization response by using 
the LGD formalism for ferraelectrics, and the size of the polar region is known, it is more 
convenient to work in terms of the local spontaneous polarization, P,. The contribution 
from individual regions to the orientation polarization is determined by the magnitude of 
the local spontaneous polarization Ps, which, in turn, is directly related to the value of the 
local transition temperature. At a given temperature T ,  only the regions with Tc greater 
than T contribute to the orientation polarization. 

To perform the calculations we suggest modifying equations ( Z ) ,  (3) and (5). to write 
them in terms of the distribution function y(T,). It is straightforward to show that the static 
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polarization, static permittivity and complex dielectric permittivity due to the orientation of 
the dipole moments of the polar regions may be written, respectively, as (we omit only the 
high-frequency response given by E;) 

A E Glazounov et a1 

where P, is a function of T, and T ,  and the relaxation time T is given by (4). 

6.2. Relaxation time spectrum 

At temperatures approximately below that of the relative dielectric permittivity maximum 
relaxors display relaxation behaviour of the dielectric permittivity within the radiofrequency 
range. It was shown by a number of authors, Dorogovtsev and Yushin 191, Viehland et al 
[lo] and Colla et al [ l l ] ,  that the relaxation is distinctly non-Debye. The dielectric response 
of relaxors is governed by an ensemble of relaxators with a broad spectrum of relaxation 
times. On cooling the width of the spectrum increases. 

In terms of the model discussed here. a distribution of relaxation times in the relaxor 
stems from the distribution of Curie temperatures. We introduce the function g(z, T ) ,  
where z = In T/TO, describing the distribution of relaxation times at temperature T .  The 
total number of relaxators in the system is represented by the value of Y(T): 

Y (T) = Jm Y(Z) dTc. (15) 
T 

Amongst them the number of relaxators with relaxation times given by z ,  within the interval 
z to z + dz, is equal to Y(T)g(z. T)dz. Since the difference in the values of z is accounted 
for by the difference in the transition temperatures Tc, the same number of rclaxators will 
be equal to y(T,) dTc. Therefore, we can find the value of g(z, T )  from 

The relationship between T, and I may be obtained from the formula 
AG,(Tc)l” 

k T  Z =  

which is a direct consequence of equation (4) for relaxation time T .  

6.3. Quantitative estirnotion of the validiry of the approach introduced in section 3 

In section 3 in order to make possible the analysis of the experimental data we replaced an 
ensemble of different regions by a system of identical ones and afterwards used equation 
(6) instead of (2) .  At that time we could not give any quantitative justification for doing 
so. The main reason was that we did not have any information about the distribution of 
the values of the dipole moments at temperature T. Now we know that function y(T,) 
describing the distribution of the local transition temperatures is given by (1 1). Therefore it 
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would be useful to derive an equation similar to (6) by using the expression for y(T,) and 
try to estimate quantitatively the error which is introduced by such a replacement. All the 
mathematical details of this can be found in the appendix. Here we mention only that in 
terms of the local transition temperatures, replacement of an ensemble of different regions 
by a system of identical ones means that we replace the distribution of Tc (for T, > T) by 
a single temperature T' corresponding to the value of the local spontaneous polarization of 
identical polar regions. Mathematically, the function y(T,), at Tc > T, is replaced by the 
delta function 6(Tc - T*). This is illustrated in figure 9. It is straightforward to obtain from 
(12) the following expression for the orientation polarization: 

(P , (T ,  T") .PEE) 
3kT 

P(T, E )  = Y ( T ) P , ( T ,  T') tanh 

- 6(T -T*) 

T T* T 
Figure 9. Distribution function y(TJ of the local tmsition rempemtures, pan of ~(7,) showing 
that only regions with T< > T contribute to t k  orientation polarization (drawn by bold solid 
line) md delta function 6 ( 7 ,  - T*), 

It is clear that equation (18) is equivalent to (6) to within E;. The suggested replacement 
of an ensemble of the polar regions introduces an error in P ( T ,  E) ,  the value of which 
depends upon the magnitude of the electric field, E .  However, the replacement can be done 
exactly at low-field limit. Assuming that the applied field E is low enough we can derive 
from (12) and (18) the following relationship: 

P, 2 (T, T') = - / " Y ( T ) P ~ ( T ,  Tc) d T  (1% 
Y ( T )  r 

which permits us to find T*. Thus, our approach is to calculate T' from (19) and then 
evaluate the errors introduced in P ( T ,  E )  by such a replacement. Before finishing this 
section i t  must be noted that we should not expect that T' remains the same for all 
temperatures T where the polar regions exist, because of the way in which we introduced it. 
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7. Simulation of dielectric properties of relaxors for the model ferroelectric 

In this section we present the results of simulation of the dielectric response of relaxors. 
The results of the analysis of static dielectric response of PMN, which have been presented 
in section 5, allow us to perform the calculations over the wider temperature range, and 
consider the frequency dependence of the dielectric properties of relaxors. Here we assume 
that the polar regions behave as a model ferroelectric with second order phase transition with 
well known free energy coefficients. For the second-order phase transition the calculations 
are rather simple. The results of simulations will be compared with those obtained from 
the experimental data for PMN. The comparison can be done here only qualitatively, since 
the free energy coefficients of the chosen materials do not necessary coincide with those 
for PMN (which are not known). 

The elastic Gibbs energy of a ferroelectric with a rhombohedral structure, with reference 
to the unpolarized state, is expressed in term of a Taylor series expansion in spontaneous 
polarization P,. For simplicity, the series is terminated here at the fourth power of PS: 

A E Clazounov et ai 

Spontaneous polarization depends upon the temperature as 

The anisotropy energy density as a function of temperature is given by 

As a model ferroelectric we have chosen Pb(Zro,sTio,a)O,, which is a perovskite with a 
second-order ferroelectric phase transition and a rhombohedral polar phase. The values of 
its free energy coefficients are known and given by Ham et al [15]. They are equal to 

(YI = 2.330 x IO5 m F-l K-I 

all = 1.362 x IO8 m5 C-' F-I 

Calculations have been performed for T from the temperature range 100 K to 450 K. Every 
time, when it was necessary to integrate over the distribution of the transition temperatures, 
for the upper integration limit we chose Tc.m plus three times the width of the distribution 
of the transition temperatures, since beyond this limit the contributions to corresponding 
integrals were negligible. 

The results of calculations of T' with (19) have shown that it changes with the 
temperature T of the sample in the following way. When T > 300 K temperature T* 
increases with T, being always several tens of degrees higher than T. Below 300 K T* 
changes slowly, and below 200 K i t  stays constant and equal to 320 K (that is, to the mean 
transition temperature TC.& The maximum values of the errors introduced in P ( T ,  E )  by 
the replacement of an ensemble of the polar regions have been estimated from equations 
(A14) given in the Appendix. They are smaller that 10% in the temperature range from 
140 K to 420 K. Thus, they are low enough to be neglected (at least, within the temperature 
range 250 K to 400 K, where we studied polarization response). We can draw the following 
conclusions. For the model of relaxor behaviour presented in section 2 the substitution of 
an ensemble of the polar regions with different values of the dipole moment by a system of 
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identical polar regions with the same magnitude of the dipole moment does not introduce 
large errors. Such a replacement does not contradict the original assumption that all the 
polar regions have different dipole moments; however, it aids in the analysis of experimental 
data. 

The static dielectric response was calculated from the formulae (12) and (13). The 
static dielectric permittivity, E: ,  increases monotonically with decreasing temperature, the 
behaviour being mostly determined by the factor T-' in (13). The integral 

Lmr(TC)e2 dTc 

in the same formula is less significant. Static polarization calculated with (12) as a function 
of the applied field at the fixed temperature has the shape of a non-linear curve and resembles 
well the experimental P(E)  data, which are shown, for example, in figure l(b). It is 
interesting to demonstrate the change in the orientation polarization with temperature at a 
fixed value of the applied field. The value of the field of 35 kV cm-' was chosen and 
the polarization at this field was calculated as a function of temperature. We compare the 
model and experimental values of the polarization at 35 kV cm-' in figure 10. Points 
denoted as experimental were obtained from the measured values of the polarization by 
subtracting the high-frequency contribution represented by E;. For the most part the model 
qualitatively corresponds well to the experiment. However, at low temperatures (< 'BO K) 
the experimental values reach saturation. but the model ones still continue to grow. This 
difference may be a sign that at low temperatures the properties of the material probably 
undergo transformations which are not accounted for by the model. 

h L ' ' ~ ' ' " ~ ' " ' ~ " ' ' ~ " " " ' " " I  
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Figure 10. The staric orientation polarization at 35 kV cm-' cdculared from the model and 
obtarned from the experimental data for PMN. 

The complex dielectric permittivity was modelled by using equation (14). The value 
of parameter ro, which enters the formula (4) for the relaxation time, was estimated as 
2 x s (it is inversely proportional to the magnitude of the typical frequency of optical 
phonons). The real part of the dielectric permittivity as a function of temperature is plotted 
in figure 1 l(a) for several frequencies. The static permittivity is shown in the same figure for 
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Figure 11. Real (E') and im;lginary (E'') p m  of the dielectric pcrmittivity SI a function of 
temperature a1 several frequencies: (a) and (b). calculated from the model (the red pml is given 
in comparison wilh the static dieleebic permittivity), (c) and (d). measured in the experiment. 

comparison. At high temperatures the relative permittivity coincides with the static one at 
every frequency. On cooling, &'(U, T )  at first deviates from &:(T), then it passes through a 
maximum and at low temperatures decreases to very small values. This actually means that 
at low temperatures the majority of relaxators have relaxation times which are too long to 
respond to the external electric field on a laboratory time scale. They appear 'blocked' in one 
of the states. The imaginary part of the relative permittivity also passes through a maximum 
on cooling (figure 1 I(b)). With increasing frequency the curve &"(U. T) shifts to higher 
temperature without a change in the magnitude of the maximum value. The relaxation 
time spectrum calculated with (16) is shown in figure I2(a) for several temperatures. It 
broadens with decreasing temperature and the maximum relaxation time in the spectrum 
(which corresponds to largest z) tends to a very large value. 

To summarize, simulations have shown the effect of the slowing down of fluctuations 
of the dipole moments of the polar regions on the dynamic dielectric properties of PMN. 
This slowing down occurs as a consequence of increasing local polarization and decreasing 
thermal energy of the crystal. It may qualitatively account for the behaviour of dielectric 
permittivity which is usually observed in the experiment. 

One can compare the behaviour of real and imaginary parts of dielectric permittivities 
calculated according to the model (figures 1 I(a). (b)) with those measured in the experiment 
(figures 1 l(c), (d)) and find certain discrepancies between the model and experimental data. 
It is easy to explain the difference in the behaviour of &'(U, T) at high temperatures. above 
-350 K. It could be attributed to the fact that model describes only orientation polarization 
and does not take into account the high-frequency response. That is why in this model the 
real part of the dielectric permittivity tends to zero at temperatures around 450 K. 
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Figure 12. Relmtion time specmm for PMN at several temperatures: calculated in terms of 
the model (a) and given in comparison with the spectrum obtained from the experimental data 
(b): 2 = ln(r / rd .  

Perhaps the most serious discrepancy between the model and the experiment can be 
found in the properties related to the relaxation time spectrum. One can obtain the function 
g(z, T )  from the experimental data by using the following approach (see [9] and [ I  I], for 
example). If the relaxation time spectrum is smooth and wide enough it can be calculated 
from the imaginary part of the dielectric permittivity measured at different frequencies at 
temperature T as 

where E : ( T )  is the static dielectric permittivity at temperature T ,  and the magnitude of z 
is calculated as z = In(l/oro) with w as measurement frequency and ro = 2 x s. 
Assuming that the condition of smoothness and broadness of the specmm is fulfilled for 
relaxors, Colla et a1 [I I ]  have shown that for the PMN spectrum in a wide temperature 
range has the shape of a broad regular function with a maximum, and tending to zero 
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values at both long and short relaxation times. Taking the data on the low-field dielectric 
permittivity we calculated the values of the function g(z, T) with equation (23) at two 
temperatures and plotted them in figure 12(b) (drawn by lines with circles). The spectrum 
calculated from the model is shown in the same plot (drawn by lines only). The interval 
of z within which experimental curves are plotted is limited by the frequency range used 
in the experiment-20 Hz to 1 MHz. At two selected temperatures experimental curves 
represent only a long-relaxation-time tail of the spectrum. It is seen that spectrum has a 
rather abrupt edge at long relaxation times. In contrast, in the model the function g(z) 
tends to zero gradually when z + W. The properties of the spectrum at long relaxation 
times may explain the difference in the behaviour of d ( m .  T) at temperatures where it 
deviates from the e : ( T t a r o u n d  300 K in figure 1 l(a) (model) and 250-300 K in figure 
1 IC (experiment). An apparent ‘cut-off in the relaxation time spectrum. at around z = 
25 (figure 12(b)), makes it possible to specify the frequency range where the dielectric 
permittivity will display relaxation behaviour and where it will be frequency independent. 
However, in the case of a gradual decrease of g(z),  as predicted by the model, frequency 
dispersion would be observed in the whole frequency range below I/-co. 

It seems also that the properties of the short-relaxation-time limit of the spectrum ( z  % 0) 
are different in the model and what is observed in practice. It has been already mentioned 
that Colla er a1 [ I  I ]  have shown that for PMN, g(z)  + 0 as z + 0 in a wide temperature 
range. From the model applied for the ferroelectric with second-order phase transition it 
follows that the function g(z. T) diverges at z + 0 as I / &  for every temperature involved 
in simulations (this is seen from equations (17) and (22)). The divergence of g(z, T) directly 
follows from the model; however, its meaning is not clear. The important thing is that the 
number of relaxators having values of z within the limited interval is equal to 
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and does not diverge as i + 0. 

8. Discussion 

Crystalline disorder, which is a common characteristic of relaxors, may cause the distribution 
both of the local transition temperatures of the polar regions and their sizes. In previous 
papers [7, 81 the effect of the distribution of the size of the polar regions on the dielectric 
properties of relaxors has been demonstrated. Here we attempted to investigate the second 
possibility, the distribution of the local transition temperatures. 

The model presented in this paper considered a relaxor as an ensemble of non- interacting 
polar regions, the dipole moments of which can be oriented by the external electric field. 
As a first test for the model we tried to fit it to experimentally measured static polarization 
of PMN as a function of the electric field and temperature, Using only one assumption, 
that the number of the polar regions is temperature dependent, the change of the static 
polarization of PMN was described in  a temperature interval of 150 K. and electric field up 
to 35 kV cm-l. 

However, to find the size of the polar regions, and the distribution function of the local 
transition temperatures. an additional assumption, that all the polar regions have the same 
size, I ,  was required. The value of 1 was estimated as a low- temperature limit of the size 
of the crystal volume containing a single polar region plotted in figure 7. It was found to 
be equal to 30 A, in good agreement with the estimate suggested by structural study of 
PMN and equal to 100 A [ 121. The distribution function of the local transition temperatures, 
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y(T,), was calculated from the temperature dependence of the concentration of the polar 
regions (figure 3). It was found that y(T,) can  be described with a Gaussian function ( l l ) ,  
parameters of which have been evaluated. 

The model was tested again through the simulation of the dielectric properties of relaxors 
using the obtained results for 1 and y(T,). The polar regions were treated as ferroelectrics 
with a second-order phase transition. It was shown that it was possible to have maxima in 
the temperature dependences of the real and imaginary parts of the dielectric permittivity 
for a finite frequency w. which are usually observed in the experiment. The peaks are 
caused by the effect of the slowing down of the relaxation time r of the polar regions. For 
individual regions, T increases on cooling below the local transition temperature as a result 
of increasing magnitude of the anisotropy energy density between the stable states (22) and 
decreasing thermal energy of the crystal. The width of the relaxation time specmm g(z. T )  
becomes larger on cooling, also due to the increasing values of the relaxation times of the 
polar regions. 

However, the model could not fully account for all the details of the frequency 
dependence of the dielectric properties. The calculated imaginary part of the dielectric 
permittivity differs markedly from that observed for relaxors (shown in figure 1 Id). The 
model also predicts that the relaxation time spectrum is a function monotonically decreasing 
with increasing r .  At the same time, the experimental data [ 111 suggest that the spectrum 
has a maximum. 

Two possible reasons for the disparities listed above can be pointed out: the use of 
a unique value of 1 in the calculations and/or the fact that the interaction between the 
polar regions was not taken into account. One can expect that the distribution of 1 plays a 
substantial role in the dynamic behaviour of relaxors. Although the distribution, either of 
the local transition temperature or the size of the polar regions, leads to frequency behaviour 
of the real part of the dielectric permittivity which is in good qualitative agreement with 
the experimental data, the latter seems to be more important. This is suggested by the 
comparison of the results of the present paper with those of the previous work. The model 
[7] with an unique transition temperature, but distribution of the size of the polar regions, 
yielded a behaviour of &'(W.  T )  similar to the present model, but much better behaviour of 
~ " ( w .  T )  [7] and the relaxation time spectrum 1161. 

9. Conclusions 

The model for relaxors as superparaelectrics with a broad distribution of the local transition 
temperatures and a unique size of the polar regions has been investigated. It has been 
shown that the distribution can explain well the static polarization response and the real 
part of the dielectric permittivity of relaxors. However, the behaviour of the imaginary part 
of the dielectric permittivity and the relaxation time spectrum was not fully accounted for. 
It has been concluded that even though the model with a distribution of T, but unique size 
reproduces qualitatively well some experimentally observed features of relaxors (the shift 
of the peaks in temperature dependence of the real and imaginary parts of the dielectric 
permittivity with frequency and broadening of the relaxation time spectrum on cooling), 
the distribution of the size of the polar regions seems to play a more important role in 
controlling the dynamic properties of relaxors. 
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Appendix 

The model presented in this paper assumes that it is the temperature T, of the local 
phase transition which determines the difference in the values of dipole moments of 
individual polar regions. The function y(T,) describes the distribution of the local transition 
temperatures of the polar regions. At a given temperature T, only the regions with T, greater 
than T contribute to the orientation polarization P(T,  E).  Therefore, the macroscopic 
polarization of the relaxor due to the alignment of the dipole moments of the polar regions 
parallel to the direction of the external electric field can be written in the form 

The volume fraction (or the total number; for the present model this is the same, since the 
size of the polar regions, I ,  is constant) of the polar regions in the relaxor at temperature T 
is given by the value of Y(T): 

l'(T)= Y(G) dT, (AV r 
Equation ( A l )  may be rewritten as 

P ( T ,  E) = Y (T)Smh(T.  Tdf (T, T,, E )  dT, 
0 

where function h(T, T,) is defined as 

In section 3 in order to facilitate the analysis of the experimental data we suggested 
substituting an ensemble of different regions by a system of identical ones, so the magnitude 
of the dipole moment is the samc for all the regions. In terms of the local transition 
temperatures such a replacement means that all the polar regions have a unique temperature 
of the phase transition, which we denote as T' (obviously, T' > T). Mathematically this 
may be expressed as the expansion of function h(T, T,)  in terms of delta function 6(T,-T*): 

38(Tc - T*) a2 a26(T, - T ' )  
h(T, T,) = a0 S(T, - T') + al + -  +... . a Tc 2 aT,2 
This equation is similar to the expansion of the electric potential of the localized charge 
distribution in terms of multipoles. Coefficients ao, a i ,  a2, . . . in (A5) may be found as 

m 
ao = 1 h (T, T,) dT, = 1 

m 
a2 = 1 (T, - T*)2h (T. T,) dT, 
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etc. 
They depend upon the temperature T ,  T*  and^ a function h(T.  Tc). For brevity we 

terminated the expansion in (As) at the third term. If we substitute now function h(T,  Tc) 
from (A5) into equation (A3) we obtain 

af(T, a Tc Tc’ E ) I  Tc=T’ 
P(E, T ) = Y ( T ) f ( T . T , * E ) - a j Y ( T )  

(A71 
a2 a 2 f  ( T ?  Tc. E )  )i.=r* 

+?Y(T)  a T: 

We can rewrite it in the following form: 

P ( E .  T ) = Y ( T ) f ( T ,  T ’ , E ) [ l - G i P + S 2 P ]  648) 
with SIP and &P given by 

The first term in (A7) and (A8) we use in  section 5 to model the orientation polarization 
behaviour of the relaxor. We can write it explicitly: 

P(E.  T )  = Y ( T ) P , ( T ,  T ’ )  tanh ( P,(TJP;. PE) 

Two others, 61 P and 62P. will be considered as the errors brought about by the replacement 
of an ensemble of the polar re-’ -ions. 

Function f ( T ,  T,, E )  is a complicated non-linear function of T,; it  depends explicitly 
on P,, which, in turn, depends upon T,. We can simplify the expressions for 6,P and &P 
in the following way. For example, we can modify the expression for SIP as 

For a given temperature T ,  the magnitude o f  the expression in the curly brackets depends 
upon the value of the applied field E. It is straightforward to show that its absolute value 
is limited to two. Therefore, we can obtain that 

In the same way one can show that 62P is limited by 

Coefficients 81 and 82 come from expressions similar to that given in the curly brackets in 
(Al l ) :  
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They both are positive values, smaller than two. 
When we know the temperature dependence of the spontaneous polarization P, of the 

model ferroelectric, the function y(TJ and the value of T * ,  we can estimate the magnitudes 
of the correction terms and evaluate the precision of the model. 

In the case of a ferroelectric with a second-order phase transition which has a low- 
temperature phase with a rhombohedral structure the temperature dependence of the 
spontaneous polarization is given by equation (22) (section 7): 

Therefore, from (A12) and (A13) one may easily obtain expressions for the estimates of 
the errors: 

For a ferroelectric with a second-order phase transition the magnitudes of 61P and 62P do 
not depend on the values of the free energy coefficients. 
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